DOI: https://doi.org/10.17072/2078-7898/2021-1-31-41

A new unconscious paradigm at the heart of mathematics and physics

Maxim G. Godarev-Lozovsky
Chairman of Saint Petersburg Philosophical club
of the Russian Philosophical Society

e-mail: godarev-lozovsky@yandex.ru
ORCID: https://orcid.org/0000-0002-3511-0854
ResearcherID: AAJ-6070-2021

It is already the case that philosophical foundations of mathematics and physics, need a serious critical analysis and revision of a number of generally accepted assumptions. In the future, this work may lead to a shift in the paradigm related to mathematics and physics. The article deals with the problem of the ideas of actual and potential infinity being not distinguished in the «fragmented thinking» of many mathematicians. We consider it necessary to differentiate between the concept of «representation of a number by an infinite decimal fraction» and the concept of «writing a numeral». A real number can be written in different ways, but every number must be uniquely represented using an infinite decimal fraction. First of all, we overcome the ambiguity of the representation of number 1 by assuming a potentially infinite set of signs of a periodic fraction and an actually infinite set of signs of a non-periodic fraction. This leads to the following harmonious scientific and philosophical system required by broad-minded scientists. 1. Every real number, including 0, (9) is represented by a single point of a continuous number line. 2. Every irrational number in decimal representation, unlike a rational number, does not have the last digit. 3. Real space, as well as past and future time are not mathematically equal and are referents of potentially and actually infinite, countable and uncountable sets. 4. The motion of a quantum micro-object, as a fundamental particle, is mathematically imaginary because a quantum particle has a countable set of points in time that is insufficient to move temporally and an uncountable set of points in space that is excessive for moving along the trajectory. Therefore, the motion of a quantum particle can be described as the path of a point in the plane of a complex variable.

Keywords: actual and potential infinity, numeric straight, countable and uncountable set, cardinality.

References

Birman, I. (2006). 0,(9) = 1. Ilya Birman’s blog. Available at: https://ilyabirman.ru/meanwhile/2006/07/10/1/ (accessed 18.09.2020).

Boss, V. (2016). Lektsii po matematike. T. 16: Teoriya mnozhestv: ot Kantora do Koena [Lectures on Mathematics. Vol. 16: Set theory: from Cantor to Cohen]. Moscow: URSS Publ., 208 p.

Cantor, G. (1985). [On various points of view on the actual infinite]. Trudy po teorii mnozhestv [Works on set theory]. Moscow: Nauka Publ., vol. 2, pp. 262–268.

Chagrov, A.V. (2013). [Infinity, omniscience, Gödel’s incompleteness theorems]. Filosofiya matematiki: aktual’nyye problemy. Matematika i real’nost’: tezisy Tret’yey Vserossiyskoy nauchnoy konferentsii, 27–28 sent. 2013 g. [Philosophy of mathematics: actual problems. Mathematics and reality: Theses of the Third all-Russian scientific conference, September, 27–28, 2013] Moscow: Center for strategic conjuncture Publ., pp. 206–209.

Cheng, E. (2019). Matematicheskiy bespredel. Ot elementarnoy matematiki k vozvyshennym abstraktsiyam [Beyond infinity: An Expedition to the Outer Limits of Mathematics]. Saint Petersburg: Piter Publ., 336 p.

Dedekind, R. (2015). Nepreryvnost’ i irratsional’nyye chisla [Continuity and irrational numbers]. Moscow: URSS Publ., 48 p.

Esenin-Volpin, A.S. (1999). Filosofiya. Logika. Poeziya. Zashchita prav cheloveka [Philosophy. Logic. Poetry. Protection of human rights]. Moscow: RSUH Publ., 452 p.

Godarev-Lozovskiy, M.G. (2020). [Metatheoretical foundations of science]. Problemy issledovaniya Vselennoy [Problems of Exploring the Universe]. No. 39(2), pp. 263–272.

Katasonov, V.N. (2012). Kontseptsiya aktual’noy beskonechnosti kak mesto vstrechi bogosloviya, filosofii i nauki: avtoref. dis. … d-ra bogosloviya [The concept of actual infinity as a meeting place for theology, philosophy and science: Abstract of D.Sc. dissertation]. Moscow, 54 p.

Klein, F. (1987). Elementarnaya matematika s tochki zreniya vysshey: v 2 t. T. 1: Arifmetika. Algebra. Analiz [Elementary mathematics from a higher standpoints: in 2 vols. Vol. 1. Arithmetic. Algebra. Analysis]. Moscow: Nauka Publ., 432 p.

Kline, M. (1984). Matematika. Utrata opredelennosti [Mathematics: the loss of certainty]. Moscow: Mir Publ., 446 p.

Kondakov, N.I. (1975). Logicheskiy slovar’-spravochnik [Logical dictionary-reference]. Moscow: Nauka Publ., 720 p.

Mordkovich, A.G. and Solodovnikov, A.S. (1990). Matematicheskiy analiz [Mathematical analysis]. Moscow: Vyshaya Shkola Publ., 416 p.

Poincare, H. (1983). O nauke [About science]. Moscow: Nauka Publ., 736 p.

Pontryagin, L.S. (1986). Obobshcheniya chisel [Generalizations of numbers]. Moscow: Nauka Publ., 120 p.

Prokhorov, Yu.V. (ed.) (1988). Matematicheskiy entsiklopedicheskiy slovar’ [Mathematical encyclopedia]. Moscow: Sovetskaya Entsiklopediya Publ., 847 p.

Seval’nikov, A.Yu. (2009). Interpretatsii kvantovoy mekhaniki. V poiskakh novoy ontologii [Interpretations of quantum mechanics. In search of a new ontology]. Moscow: URSS Publ., 192 p.

Schroedinger, E. (1983). [Special theory of relativity and quantum mechanics]. Eynshteynovskiy sbornik, 1982–1983 [Einstein’s collection, 1982–1983]. Moscow: Nauka Publ., pp. 259–270.

Sinkevich, G.I. (2019). Razvitiye ponyatiya chisla i nepreryvnosti v matematicheskom analize do kontsa XIX veka: dis. … d-ra fiz.-mat. nauk [Development of the concept of number and continuity in mathematical analysis until the end of the 19th century: dissertation]. Moscow, 402 p.

Sultanova, L.B. (2017). [Actual infinity in mathematics as «labyrinth of thinking»]. Voprosy Filosofii [Russian Studies in Philosophy]. No. 3, pp. 88–94.

Svetlov, V.A. (2016). Filosofiya matematiki [Philosophy of mathematics]. Moscow: URSS Publ., 208 p.

Received: 08.10.2020. Revised: 24.11.2020. Accepted: 02.02.2021

 

For citation:

Godarev-Lozovsky M.G. [A new unconscious paradigm at the heart of mathematics and physics]. Vestnik Permskogo universiteta. Filosofia. Psihologia. Sociologia [Perm University Herald. Philosophy. Psychology. Sociology], 2021, issue 1, pp. 31–41 (in Russian). DOI: https://doi.org/10.17072/2078-7898/2021-1-31-41