УДК [114+116]: 530.145
DOI: 10.17072/2078-7898/2015-2-48-54
ПРОБЛЕМА ПРОСТРАНСТВА И ДВИЖЕНИЯ
В КВАНТОВОЙ МЕХАНИКЕ
Годарев-Лозовский Максим Григорьевич
Председатель Санкт-Петербургского Философского клуба
Российского философского общества
198259, Санкт-Петербург, ул. Тамбасова, д. 25, корп. 6, кв. 57;
e-mail: godarev-lozovsky@yandex.ru
В статье констатируется противоречие между представлениями о перемещении физических объектов в пространстве в классической и квантовой механике. Предлагается теория, которая, разрешая известные апории Зенона, устраняет это противоречие. При этом основным допущением является атемпоральный характер элементарных перемещений квантовых микрообъектов (в т.ч. атомов) в непрерывном пространстве. В предшествующих публикациях мы предложили принцип атемпоральности динамики некоторых параметров квантового микрообъекта, в том числе координат, в пространстве. Действительно, соотношение неопределенности Гейзенберга показывает, что присутствие координат квантовой частицы несовместимо с наличием у нее скорости. Уравнение Шредингера описывает вероятностно именно то, что объективно и фактически имеет место в действительности. Допустима также интерпретация этого уравнения в пользу атемпоральности: даже в бесконечно малый промежуток времени существует конечная вероятность того, что частица присутствует в некотором объеме, а в следующий бесконечно малый промежуток времени существует вероятность того, что частица отсутствует в том же объеме.
Показано, что из совокупности последовательных вневременных телепортаций атомов, составляющих макротело, складывается темпоральное его движение.
Ключевые слова: кинематика, бесконечность, атемпоральность, бестраекторность, реальное пространство, перемещение, квантовая механика.
The problem of space and motion in quantum mechanics
Godarev-Lozovsky Maxim Grigorievich
Chairman of the St. Petersburg's Philosophical Club
of The Russian Philosophical Society
25/6–57, Tambasov str., Saint-Petersburg, 198259, Russia;
e-mail: godarev-lozovsky@yandex.ru
In the present work shown are contradiction between beliefs about space movement of physical objects in classical and quantum mechanics. A theory that resolves the known Zenonaporiasand removes this contradiction is suggested. The basic assumption is the atemporal nature of the basic movements of quantum micro-objects (including atoms) in continuous space. In our previous papers we suggested the principle of atemporality: certain parameters of a quantum micro-object, including coordinates in space, change atemporarily. Indeed, the Heisenberg relation of uncertainty shows that the presence of coordinates of a quantum particle is incompatible with the presence of its velocity. The Schrödinger equation describes probabilistically exactly that, which objectively and actually takes place in reality. It is also permissible to treat this equation in favor of atemporality: even within an indefinitely small period of time there is some probability that a particle is present in certain volume, and in the next indefinitely small period of time there is some probability that the same particle is absent in the same volume.
It is shown that a set of sequential extra-temporal teleportations of atoms constituting a macro-bodyresults in its temporal movement.
Key words: kinematics, infinity, atemporallity, lack of trajectory, real space, movement, quantum mechanics.
В. Бернштейн, критикуя господствующую интерпретацию квантовой механики, сделал любопытное наблюдение: в процессе исторического развития науки отдельные научные дисциплины отпочковались от философии, однако произошел и обратный процесс — основами квантовой механики сейчас занимается преимущественно философия, официальная же физика примирилась с наличием неясных вопросов и их узаконила [3, с. 30]. Одним из таких «узаконенных» неясных вопросов остается вопрос понимания сущности перемещения физических объектов в пространстве.
Проблема
М. Бунге в своей известной книге отмечал: «Не следует ожидать, что в квантовой механике должны существовать кинематика или теория движения лишь по той причине, что она носит неверное название механики… Квантовая механика вовсе не предназначается для ответов на вопросы классической кинематики… Об отношениях между квантовой и классической механикой мы знаем очень мало» [4, с. 176]. Ясно одно: физике движение макро- и микрообъектов представляется по-разному. Если в одном случае оно описывается уравнениями движения Ньютона, то в другом — уравнением Шредингера. Известно, что уравнение Шредингера дает набор вероятных решений в виде стационарных состояний, но не описывает процессы перехода из одного стационарного состояния в другое. Представляется, что не связанная с вероятностями классическая механика Ньютона и квантовая механика, имея каждая свой специфический язык и аксиоматику, не имеют прежде всего логического согласования друг с другом, строгого доказательства того, что одна переходит в другую [4, с. 264].
Каким же образом согласовать эти различные представления о перемещении в пространстве? В связи с поставленным вопросом процитируем некоторые интересные мысли Максвелла: «Обычно научное знание растет за счет аккумуляции вокруг конечного числа отличающихся друг от друга центров. Но рано или поздно должно наступить такое время, когда два или более раздела знания уже не могут оставаться независимыми друг от друга, а должны слиться в согласованное целое… каждая наука может показаться достаточно согласованной внутри самой себя, но прежде чем науки смогут быть объединены в одно целое, каждая должна быть освобождена от “известкового раствора”, при помощи которого ее части были предварительно скреплены для согласования друг с другом…». Р. Нугаев в этой связи замечает: Максвелл отдает себе отчет в том, что любое наблюдение всегда несет на себе отпечатки теоретического языка… «следы цемента». Поэтому, по Максвеллу, необходимо создать «нейтральный язык» или теоретический язык, по возможности равноудаленный от всех сравниваемых теорий [17, с. 48]. А какой язык, если не язык философии, равноудален от языка конкретных наук? Вот только с «цементом» нужно очень внимательно разобраться, ибо каждая из наук имеет свои собственные парадигмы и, увы, собственные же мифы.
Итак, определим текстуально основную проблему, которую постараемся решить: как соотнести бестраекторный и траекторный принципы перемещения физических объектов? Представление о движении физического объекта в ньютоновой механике основано на допущении того, что этот объект проходит свой путь последовательно и поточечно. Однако известно, что бестраекторное движение квантовой частицы опровергает подобное допущение. (В настоящей работе под термином «движение» предлагается понимать исключительно перемещение физических объектов в пространстве.)
История проблемы
К истории проблемы относятся известные апории Зенона из Элеи: Дихотомия, Стрела, Ахиллес и Черепаха, которые обнаружили противоречивость движения через бесконечную последовательность отрезков пути непрерывного пространства. Позже Аристотель указывает на возможность разрешить данное противоречие допущением о бесконечной делимости не только пространства, но и времени, т.е. тело за бесконечно малый промежуток времени проходит бесконечно малый отрезок пути и на первый взгляд противоречие разрешается [1, с. 252]. На этом неявном допущении в науку о движении в XVII в. входит дифференциальное исчисление. Однако наименьшего, т.е. бесконечно малого, приращения пути тела в реальности не существует, а бесконечная последовательность отрезков пути не может по определению исчерпаться [12, с. 43]. Апории Зенона логически остаются неразрешимыми.
Необходимо отметить, что еще в средневековой арабской философии физическое движение могло рассматриваться как уничтожение тела и его возникновение заново, т. е. как движение путем мгновенного скачка, которое совершает тело от одного места к другому, минуя промежуточные места [5, с. 67]. С рождением квантовой механики проблема понимания сущности движения заявляет о себе с новой силой и в новом контексте: необходимо осознать и осмыслить совершенно новое явление, т.е. квантовые скачки.
В 1925–1927 гг. проблему интерпретации квантовых скачков обсуждают основатели квантовой механики. При этом их позиции принципиально расходятся: Э. Шредингер скачки отрицает; А. Эйнштейн фактически объясняет их наличием скрытой траектории частицы; В. Гейзенберг отрицает, что скачки происходят в пространстве и времени; Н. Бор отрицает их наглядность и просто постулирует [6, с. 62]. С осени 1927 г. утверждается господствующая ныне копенгагенская интерпретация квантовой механики, в основе которой лежит запрет на вопрос о том, что есть квантовый объект вне его наблюдения, и принцип: «Считай и не задавай философских вопросов». Однако физика, как справедливо замечает А. Севальников, в конечном счете интересует именно этот «запрещенный» вопрос: что есть объект сам по себе? [18, с. 69].
Когда В. Гейзенберг высказывает свое суждение относительно внепространственно-вневременной интерпретации сущности квантовых скачков, он не догадывается, что прав только наполовину. Ибо эти скачки действительно реализуются вне времени, но исключительно в пространстве. Ошибка Гейзенберга не случайна, ведь он мыслит категориями релятивистского пространства–времени. Однако квантовая частица, в отличие от частицы релятивистской, не имеет траектории, а это означает, что у нее нет мировой линии! Бор это чувствует и поступает иначе: он следует ньютонову принципу «физика — бойся метафизики!» и фактически отказывается признать квантовые скачки физическим процессом. Он предлагает свои известные принципы — соответствия и дополнительности. Учитывая авторитет Бора, многие до сих пор необоснованно полагают, что эти принципы полностью исчерпывают проблему гармонизации представлений о движении микрообъектов и макротел в пространстве. В частности, критика подобных заблуждений «копенгагенцев» содержится в работе А. Липкина [16, с. 110].
Концептуальное решение проблемы
В период становления квантовой механики крупнейший математик своего времени Д. Гильберт, по существу, призвал физиков отказаться от неадекватных представлений о движении микрообъектов в пространстве и времени, но, к сожалению, услышан не был [7, с. 37]. В развитие этой идеи Гильберта значительно позднее М. Годаревым-Лозовским был предложен принцип атемпоральности: «Некоторые параметры квантового микрообъекта (в т.ч. координаты, направление поляризации и др.) изменяются атемпорально» [8, с. 60]. Теория физического пространства и движения, развивая принцип атемпоральности, превращает его в научную философскую теорию. Для этой теории предлагаются философские основания, в которых исходным является принцип различения: «Существует только то, что имеет различие» [13, с. 302]. Это означает, что по отношению к пространству и времени существуют четыре различных взаимодополнительных типа реальности. Их структуру отражает подход к фундаментальным типам реальности В. Фалько [19, с. 161].
Подход В. Фалько позволяет признать старательно игнорируемую многими физиками вневременную реальность, хотя нет ничего удивительного в том, что электростатика обходится без понятия времени. Но прежде чем излагать саму нашу теорию, ответим на вопрос: каков реальный смысл известной дискретности связанной с движением, т.е., образно выражаясь, каков смысл «скачков координат микрообъекта» при его перемещении?
Дискретность движения в микромире
В квантовой механике определяемое по макроскопическим часам время является переменной величиной. Эта величина де-факто выполняет роль скрытого параметра эволюции некоторых состояний. По молчаливому соглашению к эволюционирующим во времени динамикам относят даже квантовый скачок электрона в атоме с одного энергетического уровня на другой. При этом полагают, что некоторые потенциально наблюдаемые параметры частицы не имеют физического смысла и объявляются несуществующими. К таким параметрам, в частности, относят актуальные координаты микрообъекта в пространстве до их измерения. [9, с. 148].
Однако представляется, что обозначенная выше парадигма, назовем ее темпоральной, является ошибкой. Ведь именно время как ненаблюдаемая величина лишено физического смысла при рассмотрении динамики некоторых состояний. К процессам, лишенным длительности, мы можем отнести элементарный (т.е. далее неделимый) бестраекторный скачек координат микрообъекта, который вполне согласуется с логическим законом исключенного третьего. Если объект Х находится в одном из А и В, то он не находится в другом, находясь одновременно, но последовательно в разных местах. Логика также требует, чтобы субъективно неопределенные, но при этом актуальные и потенциально наблюдаемые состояния обрели физический смысл до момента измерения.
К потенциально наблюдаемым параметрам мы можем отнести актуальные координаты микрообъекта до их измерения, последовательность которых, вероятно, не зависит от временной последовательности. При этом серию элементарных (неделимых) перемещений квантовой частицы допустимо только в некотором приближении рассматривать квазиклассически, описывая ее непрерывной функцией. Удивительно, но сам А. Эйнштейн допускал возможность отказа физики от пространственно-временного континуума и непрерывных функций. Он писал: «Можно думать, что человеческая изобретательность в конце концов найдет методы, которые позволят следовать этому пути» [21, с. 56]. Возможно, что функция, разрывная в каждой точке, как полагает В. Янчилин, действительно отражает суть серии элементарных перемещений частицы в пространстве [22, с. 29]. С. Артеха задается вопросом: «Что мешает выбрать в качестве волновой функции обобщенную функцию или функцию с разрывом, скачком идр. (что могло бы “скомпенсировать” некоммутативность и устранить якобы одновременную неизмеримость величин)?» [2, с. 107]. Как уже упоминалось выше, нами предложен принцип атемпоральности: некоторые параметры квантового микрообъекта, в том числе координаты в пространстве изменяются атемпорально [8, с. 60].
Действительно, соотношение неопределенности Гейзенберга показывает: наличие координат у квантовой частицы несовместимо с одновременным наличием у нее скорости. При этом координаты, пусть и неопределенные, частице присущи всегда. Это означает, что скорость при элементарном перемещении микрообъекта становится «вне закона». С. Артеха язвительно замечает по этому поводу: «Чему же по физическому смыслу отвечают собственные функции оператора импульса? Частице, которая одна во всей Вселенной и летит с постоянной скоростью неизвестно относительно чего и даже неизвестно где, так как “размазана” во всей Вселенной. Замечательно емкое понятие!» [2, с. 107]. Косвенно на незаконность такого понятия, как скорость элементарного перемещения микрообъекта, указывает со своей стороны сама невозможность описания квантовой частицы с помощью уравнений движения Ньютона.
Но на что указывает тогда уравнение Шредингера? Определим амплитуду вероятности в духе работы Г. Левина — как средство описания, характеристику актуально происходящего до момента измерения [14, с. 97]. Именно то, что объективно и актуально происходит в действительности, описывает вероятностно уравнение Шредингера. Это уравнение также допустимо трактовать в пользу атемпоральности: даже в бесконечно малый отрезок времени dt1 имеется вероятность пребывания частицы в некотором конечном объеме δv, а в следующий за ним бесконечно малый отрезок времени dt2 имеется вероятность отсутствия частицы в этом же объеме.
Сущность физического пространства
Но о каком пространстве все же идет речь?
Известно, что математический формализм квантовой механики формулируется в терминах гильбертова бесконечномерного пространства. Постепенно это вспомогательное математическое пространство стало ассоциироваться с реальным, трехмерным физическим пространством. Однако только ассоциироваться, но, что очень важно, не заняло его места! При этом учитывая а) противоречия между квантовой механикой и теорией относительности [18, с. 146]; б) однородность распределения вещества в космологических масштабах; в) топологическую инвариантность ньютонова пространства и др., следует отметить: реальное пространство физического мира, несомненно, является евклидовым и трехмерным!
Непрерывность пространства общепринята, ведь демокритова концепция конечных атомов как элементов пространства — анахронизм уже со времен И. Канта. «Всякое созерцаемое в своих границах пространство есть такое целое, части которого при всяком разложении в свою очередь все еще представляют собой пространства, и потому оно делимо до бесконечности» [11, с. 473]. А Г. Кантор полагал актуально — бесконечное множество, мыслимое как целое, как данность, самоочевидным понятием, что относилось, однако, к математическому континууму. Действительно, десятичная дробь 0,333… бесконечно делима сразу как данность без учета процесса потенциального деления этой величины.
Относительно физического пространства известно, что его дискретность весьма сомнительна как в теории, так и в эксперименте [10].
Теория физического пространства и движения
Теория пространства
1. Не имеется доказательств существования абсолютной пустоты. Например, позицию У. Хетчера по этому поводу можно выразить в следующем высказывании. Поскольку ни один из известных науке составных феноменов несамообусловлен, постольку имеется один и только один самообусловленный феномен G, причем этот феномен G является простой (несоставной) всеобщей причиной, т.е. причиной любого существующего феномена. При этом, утверждал Парменид, никогда не может быть доказано, что несуществующее существует.
2. В связи с отсутствием существования абсолютной пустоты реальное трехмерное физическое пространство, заполненное материей, актуально бесконечно делимо.
Теория движения
3. Ввиду актуальной бесконечной делимости пространства элементарное (т.е. далее неделимое) перемещение в нем квантового микрообъекта атемпорально и бестраекторно. Д. Гильберт и П. Бернайс, намечая путь к разрешению известных апорий Зенона, рассуждают следующим образом. «Подобно тому, как при неограниченном пространственном дроблении вода перестает быть водой, при неограниченном дроблении движения также возникает нечто такое, что едва ли может быть охарактеризовано как движение. ...Действительно ли мы располагаем доказательством непротиворечивости математической теории движения?.. Мы вовсе не обязаны считать, что математическое пространственно-временное представление о движении является физически осмысленным также и в случае произвольно малых пространственных и временных интервалов».
4. Темпоральное движение макротела складывается из последовательных атемпоральных перемещений атомов, составляющих это тело. В соответствии с концепцией А. Левича, «движение происходит не путем “раздвигания” элементов субстанции, а путем их замены в системе, т.е. “вхождения” в систему одних “точек”… пространства и выхода других».
Сообразуясь с известным лаконичным выражением академика Л.А. Арцимовича «правильное просто», следует сказать, что предлагаемая теория — предельно проста.
На основании теории физического пространства и движения возможны следующие предположения:
1) всякое фундаментальное теоретическое построение, явно или неявно основанное на дискретности пространства или времени, обречено на расходимости;
2) время квантового туннелирования всякого множества объектов всегда будет стремиться к нулю;
3) формулы движения классической механики можно корректно получить из формул квантовой механики толькос учетом атемпоральной гипотезы.
В заключение можно констатировать, что с появлением квантовой механики гипотетическое признание атемпоральности перемещения частиц вступило бы в конфликт с представлением о физическом (но не метафизическом!) характере перемещения объектов в пространстве. Теория физического пространства и движения предлагает новые метафизические основания для фундаментальных концепций современной квантовой физики.
Список литературы
- Аристотель. Физика // Сочинения: в 4 т. Т. 3. М.: Мысль, 1981. 613 с.
- Артеха С.Н. Основания физики. Критический взгляд. Квантовая механика. М.: URSS, 2015. 208 с.
- Бернштейн В.М. Развитие электродинамики Гаусса-Вебера: квантовая механика без волновой теории; Соотношение неопределенности Гейзенберга без парадоксов // Международный конгресс «Фундаментальные проблемы естествознания и техники». СПб.: 2000. № 1, т. 1. 198 с.
- Бунге М. Философия физики. М.: Прогресс, 1975. 342 с.
- Гайденко П.П. История новоевропейской философии в ее связи с наукой. М.: Либриком, 2011. 456 с.
- Гейзенберг В. Часть и целое. М.: УРСС, 2012. 616 с.
- Гильберт Д.,Бернайс П. Основания математики. Логические исчисления и формализация арифметики. Т. 1. М.: Наука, 1982. 556 с.
- Годарев-Лозовский М.Г. Возможность и онтологические основания атемпоральной интерпретации квантовой механики // Вестник Пермского университета. Философия. Психология. Социология. 2014. Вып. 1(17). С. 60–67.
- Гринштейн Дж., Зайонц А. Квантовый вызов. Долгопрудный: Интеллект, 2008. 400 с.
- Каганов М.И., Любарский Г.Я. Абстракция в математике и физике. М.: Физматлит, 2005. 352 с.
- Кант И. Сочинения: в 6 т. Т. 3.М. 1964. 730 с.
- Катасонов В.Н. Метафизическая математика XVII века. М.: URSS, 2014. 144 с.
- Колычев П.М. Релятивная онтология и релятивистская квантовая физика // Философия физики: материалы науч. конф. (17–18 июня 2010 г.). М.: Либриком, 2010. 387 с.
- Левин Г.Д. Что есть вероятность? // Вопросы философии. 2014. № 2. 190 с.
- Левич А.П. Моделирование времени как методологическая задача физики // Философия физики: материалы науч. конф. (17–18 июня 2010 г.). М.: Либриком, 2010. 387 с.
- Липкин А.И.Основания физики. Взгляд из теоретической физики. М.: УРСС, 2014. 208 с.
- Нугаев Р.М. Генезис электродинамики Максвелла: интертеоретический контекст // Философия науки. 2014. № 2(61). 120 с.
- Севальников А.Ю. Интерпретации квантовой механики. В поисках новой онтологии / Институт философии РАН. М: УРСС, 2009. 192 с.
- Фалько В.И. Типы философских онтологий физики // Философия физики: материалы науч. конф. (17–18 июня 2010 г.). М.: Либриком, 2010. 387 с.
- Хэтчер У. Минимализм. СПб.: Аксиос, 2003. 119 с.
- Эйнштейн А. Физика и реальность. М., 1965. 360 с.
- Янчилин В.Л. Квантовая нелокальность. М.: УРСС, 2010. 144 с.
Получено 23.02.2015
References
- Arteha S.N. Osnovaniya fiziki. Kriticheskij vzglyad. Kvantovaya mehanika [Foundations of physics. Critical look. Quantum mechanics]. Moscow, URSS Publ., 2015, 208 p. (In Russian).
- Bernshtein V.M. [Gauss-Weber's electrodynamics development: quantum mechanics without wave theory; Correlation if Heisenberg's uncertainty principle without paradoxes]. Mezhdunarodnyj kongress «Fundamental'nye problemy estestvoznaniya i tehniki». No 1, t. 1 [International congress «Fundamental problems of natural science and technics». No 1, vol. 1]. Saint Petersburg, 2000, 198 p. (In Russian)
- Bunge M. Filosofiya fiziki [Philosophy of physics]. Moscow, Progress Publ., 1975, 342 p. (In Russian).
- Gajdenko P.P. Istoriya novoevropejskoj filosofii v ee svyazi s naukoj [History of modern European philosophy and its connections with science]. Moscow, Knizhnyj dom Lebrikon Publ., 2011, 456
- Heisenberg W. Chast’ i tseloe [The part and the whole]. Moscow URSS Publ., 2012, 616 p. (In Russian).
- Gilbert D., Bernais P. Osnovaniya matematiki. Logicheskye ischisleniya i formalizatsiya arifmetiki. T. 1 [Foundations
- Godarev-Lozovsky M.G. [The possibility and ontological basis for atemporal interpretation of quantum mechanics]. Vestnik Permskogo universiteta. Seriya «Filosofiya. Psihologiya. Sotsiologiya» [Perm University Herald. Series “Philosophy. P2014, iss. 1(17), pp. 60–67. (In Russian).
- Greenstein G., Zajonc A. Kvantovyj vyzov. Sovremennye issledovaniya osnovanij kvantovoj mehaniki [The quantum challenge. Modern research on the foundations of quantum mechanics]. Izdatel'skij dom Intellekt Publ., 2008, 400 p. (In Russian).
- Kaganov M.I., Lyubarsky G.Ya. Abstraktsiya v matematike i fizike [Abstraction in mathematics and physics]. Moscow, Fizmatlit Publ., 2005, 352 p. (In Russian).
- Kant I. Sochineniya: v 6 t. T. 3 [Oeuvre in 6 vol. Vol. 3]. Moscow, 1964, 730 p. (In Russian).
- Katasonov V.N. Metafizicheskaya matematika XVII veka [Metaphysical mathematics of the XVIIth century]. Moscow, URSS Publ., 2014, 144
- Kolychev P.M.[Relative ontology and relativistic quantum physics]. Materialy nauchnoj konferentsii 17–18 iyunya 2010 [Proceedings of scientific conference of June 17–18, 2010]. Moscow, Knizhnyj dom Librokom Publ., 2010, 387
- Levin G.D. [What is probability?]. Voprosy filosofii [Issues of philosophy]. 2014, no2, 190
- Levich A.P. [Time modelling as methodological aim of physics]. Filosofiya fiziki: Materialy nauchnoj konferentsii 17–18 iyunya 2010 [Philosophy of physics: Proceedings of scientific conference of June 17–18, 2010]. Moscow, Knizhnyj dom Librokom Publ., 2010, 387
- Lipkin A.I. Osnovaniya fiziki. Vzglyad iz teoreticheskoj fiziki [Foundations of physics. View from theoretical physics]. Moscow, URSS Publ., 2014, 208 p. (In Russian).
- Nugaev R.M. [Maxwell's electrodynamics genesis: intertheoretical context]. Filosofiya nauki [Philosophy of science]. 2014, no2(16), 120
- Seval'nikov A.Yu. Interpretatsii kvantovoj mehaniki. V poiskah novoj ontologii [Quantum's mechanics interpretations. In search of a new ontology]. Moscow, URSS Publ., 2009, 192 p. (In Russian).
- Fal'ko V.I. [Types of philosophical ontologies of physics]. Materialy nauchnoj konferentsii 17–18 iyunya 2010 [Proceedings of scientific conference of June 17–18, 2010]. Moscow, Knizhnyj dom Librokom Publ., 2010, 387
- Hatcher W. Minimalizm [Minimalism]. 2003, 119 p. (In Russian).
- Einstein A. Fizika i real'nost' [Physics and reality]. Moscow, 1965, 360 p. (In Russian).
- Yanchilin V.L. Kvantovaya nelokal'nost' [Quantum nonlocality]. Moscow, URSS Publ., 2010, 144 p. (In Russian).
The date of the manuscript receipt 23.02.2015
Просьба ссылаться на эту статью в русскоязычных источниках следующим образом:
Годарев-Лозовский М.Г. Проблема пространства и движения в квантовой механике // Вестник Пермского университета. Философия. Психология. Социология. 2015. Вып. 2(22). С. 48–54.
doi: 10.17072/2078-7898/2015-2-48-54
Please cite this article in English as:
Godarev-Lozovsky M.G. The problem of space and motion in quantum mechanics // Perm University Herald. Series «Philosophy. Psychology. Sociology». 2015. Iss. 2(22). P. 48–54. doi: 10.17072/2078-7898/2015-2-48-54